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ABSTRACT 
Citizen Cyberscience (CCS) projects are online projects that engage participants with no 
necessary prior scientific experience in online tasks of very varied types and that contribute to the 
scientific research in different domains. Many research studies confirm the usefulness of CCS 
projects to researchers while less has been done to explore their added-value for the participants. 
Specifically, we are interested to know to what extent CCS projects help participants learn while 
participating through typically small-sized and very specific tasks. 

We propose in this work to include another source of quantitative data to the research toolbox 
usually used to evaluate learning in informal learning contexts as the one of citizen science. This 
data source is learning analytics that makes use of the already very ubiquitous web analytics and 
that is heavily used in varied online learning environments. Based on our experimentations with 
two CCS pilot projects, we created a framework to help CCS project designers properly 
implement learning analytics in their project in order to make the full use of these analytics and 
integrate them with other sources of quantitative data related to the user experience. We apply the 
proposed framework to explore the interaction between learning and engagement in two pilot 
CCS projects of different types: volunteer thinking and gaming. Based on our experience, we 
conclude with few good practices and recommendations to avoid pitfalls.  
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1. INTRODUCTION 
Citizen science refers to collaborative projects where researchers invite volunteers and engage 
them in scientific activities that they don’t necessarily have any initial experience in (Hand, 
2010). Volunteers are typically asked to perform data collection and processing or monitoring 
activities. The generalization of the interactive web2.0 in the last decade allowed for the 
development of Citizen CyberScience projects (CCS) that engage participants in tasks which also 
involve the use of computers and the internet. Some of these multi-disciplinary projects 
underlying online crowd-powered systems are also addressed as Human Computation. They 
solicit the human cognition to achieve new capabilities beyond computer capabilities 
(Michelucci, 2013). 

Crowd-powered science has demonstrated its usefulness for research (Sauermann & Franzoni, 
2015); however, little is known about its potential for volunteers. Specifically, we are interested 
in understanding how citizens learn from “virtually” participating in projects, and what they do 
learn.  

The educational impact of citizen science is already addressed by several studies (Bonney, 
Phillips, Ballard, & Enck, 2015); (Cronje, Rohlinger, Crall, & Newman, 2011); (Crall, Jordan, 
Holfelder, & al., 2013)). Nevertheless, results on learning in citizen science focus on effects of 
participation on scientific literacy and on content-knowledge (Jordan, Ballard, & Phillips, 2012). 
Our perception of learning in CCS projects is instead multidimensional and is not limited to the 
scientific literacy (see discussion below in subsection 1.1), hence we need adapted evaluation 
tools to assess the different dimensions of the impact of CCS on the learning of the participants. 

Increasingly data analytics appears to provide such an evaluation tool as it involves tracking the 
online actions of participants through time in order to reveal potential trends or user profiles, to 
analyse the effects of certain decisions or events, or to evaluate the performance of a given tool or 
scenario.  

Globally, managers and decision makers agree on the “the importance of increasing the use of 
analytics in decision making” (Kiron, Prentice, & Ferguson, 2014), and as analytics is becoming 
ubiquitous in online activities, it appeared natural to use it in education in general (Siemens & 
Long, 2011) and to study learning in citizen science projects too as they also offer a learning 
experience to their participants. Hence we have made learning analytics a core tool in our toolbox 
for evaluating learning in the pilot projects that are developed as part of the European project 
Citizen Cyberlab. 

This paper aims to present a framework that establishes learning analytics in a given CCS project 
on the basis of the expected learning outcomes of the project. The analytics data are collected and 
then aggregated into indicators reflecting the effective achievement of the learning outcomes of 
each participant. We don’t discuss here the technical details of implementing and collecting 
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analytics events. Our partners at the Citizen Cyber Lab developed for this purpose a monitoring 
framework: the CCLTracker presented in detail in (Fernandez-Marquez, et al., 2016). 
Nevertheless, our framework is independent of the analytics data collection method. 

Our framework is applied to two pilot projects, a volunteer thinking application and a game. 
GeoTag-X1 is a pilot crowdsourcing platform launched by The UN Institute UNITAR/UNOSAT 
to rely on human computation to support disaster response. The primary aim of GeoTag-X is to 
develop an application that facilitates the human harvesting and analysis of photos related to 
disasters around the world such as floods, drought, and war destruction, and the creation of 
datasets that could be used by humanitarian organizations in their response. In order to be 
successful in this aim, the project worked on the transfer of the expertise from knowledgeable 
individuals to the crowd. Specifically, the target skills are: to identify relevant photos, to conduct 
detailed analysis of those photos and potentially geo-reference them as precisely as possible. 

The second pilot project is of a completely different nature and different target participants. It is 
an interactive educational learning game called Virtual Atom Smasher (VAS2), developed by 
CERN, The European Organization for Nuclear Research. In this game, the players are 
challenged to “tune” a simulation of high-energy particle collisions to give an optimal description 
of a chosen set of reference data, while simultaneously learning about particle physics.  

We share here our experience and make few recommendations to help other CCS project 
designers who plan to include learning analytics in their evaluation toolbox. In fact, nearly two 
decades of research in educational data mining (Romero & Ventura, 2010) demonstrates that 
designing systems that provide the right data and extracting useful information from large 
amounts of data are not trivial tasks. Also, Analytics data should be triangulated with 
psychometric data (quizzes and surveys) which opens a large avenue for further research. 

It should be kept in mind that our framework was applied to pilot projects that availed limited 
datasets. The data was collected during short periods of time and with a small number of 
participants. Hence, the statistical analysis options were limited. The purpose of the article is not 
to introduce new statistical analysis methods of analytics data neither to present novel analysis 
results, but rather to share our experience of defining and using learning analytics in assessing 
learning and engagement in CCS projects. As a proof of concept, we conducted a small typology 
analysis that revealed interesting patterns in the profiles of the participants, and that would be 
interesting to explore in other CCS projects with richer analytics datasets. 

We continue our introduction with a presentation of our understanding of learning and 
engagement in CCS projects and with a brief introduction of learning analytics. Section 2 
summarizes the different analytics of interest that could be generated and tracked in citizen 
 
1 http://GeoTag-X.org/ 
2 http://test4theory.cern.ch/vas/ 
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science projects. We then proceed in section 2.2 with the specific task of using learning analytics 
to understand which types of learning occur when participating in online citizen science activities. 
We present in section 3 an example of application where we analyse the profiles of the 
participants in a pilot project, as revealed by the analytics data. Finally, we conclude with a 
synthesis of the good practices learned from our experience and suggest future developments. 

1.1 Learning in Citizen Cyberscience 

Similarly to formal learning contexts where learning is the result of the interactions of the learner 
with content, with instructors and tutors, and/or with other learners (Elias, 2011), learning in 
citizen science happens through activities and potentially from interaction with peers and experts.  

Wiggins and Crowston (Wiggins & Crowston, 2011) describe citizen science as a type of 
collaboration where individuals are involved with the scientific community in research projects 
addressing issues from the real world or more generally ones that might interest non-specialists. 
Citizens and scientists work collectively to achieve a common goal, usually in the form of data 
collection or social action.  

While the contribution of volunteers to scientific data collection and analysis has been well 
documented, understanding how participation in citizen science projects affects learning is at the 
heart of many studies (Schneider, DaCosta, Abu-Amsha, Jennett, & Kloetzer, 2016) (Kloetzer, 
Schneider, & da Costa, 2016) (Crall, Jordan, Holfelder, & al., 2013), (Cronje, Rohlinger, Crall, & 
Newman, 2011), (Jordan, Gray, Howe, Brooks, & Ehrenfeld, 2011) and the evaluation of learning 
outcomes of citizen science projects is increasingly gaining interest (Jordan, Ballard, & Phillips, 
2012).  

Learning outcomes in citizen science can in general be defined on multiple levels. There are 
individual-, program-, and even in some programs, community-level outcomes (Jordan, Ballard, 
& Phillips, 2012). There is also a balance to be clearly defined between learning goals and 
scientific goals (see discussion in (Lieberoth, 2014)). We focus in this work on the individual 
outcomes that are tightly linked to the learning induced by the participation. 

Evidence of impact on scientific literacy and on content-knowledge is the most discussed (Jordan, 
Gray, Howe, Brooks, & Ehrenfeld, 2011). A recent large-scale survey was conducted to assess 
the different dimension of learning through participation in CCS projects (Schneider, DaCosta, 
Abu-Amsha, Jennett, & Kloetzer, 2016). Abide from this cross-projects study, researchers usually 
assess learning in citizen science with evaluation tools that are specifically designed to capture 
the specific nature and content of one project, which makes difficult the comparison between 
different projects performance.  
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One of the objectives of our work presented here is to set up a common framework where 
learning in different citizen science projects can be assessed using the same approach while 
adapting the tools to the context. 

Preliminary research during the Citizen Cyberlab project (Kloetzer L. , et al., 2013), revealed that 
learning in CCS projects occurs in multiple directions. Interview data indicated the existence of 
six categories of learning outcomes: At the task level, we distinguish learning regarding the 
project mechanics and pattern recognition skills. At the higher project level, we can distinguish 
scientific topic learning and general scientific literacy. These types of learning are encouraged in 
the context of the project but they are usually acquired by additional involvement in the project 
community. Finally, the interviews revealed the potential acquisition of off-topic (e.g. 
communication skills, computer literacy) and personal development skills that cover a wide range 
of skills with no relation to the CCS project domain or type. They are in fact fortuitous outputs 
induced by heavy involvement in the projects. 

Traditionally, assessing citizen science projects impacts relies on pre- and post-tests and 
responses from surveys, interviews, and board diaries (e.g. (Brossard, Lewenstein, & Bonney, 
2005) (Jordan, Gray, Howe, Brooks, & Ehrenfeld, 2011)). Tracking the achievement of individual 
participants can also be done through activity logging. This article will emphasize the use of 
logging capabilities offered by the modern analytics frameworks to specifically evaluate the 
learning of participants in CCS projects. 

1.2 Engagement in Citizen Cyberscience 

Meece & al. (Meece, Blumenfeld, & Hoyle, 1988) set a model for cognitive engagement in the 
classroom. Engagement from an educational point of view is seen as learner participation, and 
interaction with the learning material, learning activities, and the learning community. 

O’Brien and Toms (O'Brien & Toms, 2008) proposed a conceptual framework for user-
engagement with technology that could be used in various application areas, including 
technology-based learning, citizen cyberscience projects, etc. According to O’Brien & Toms, 
"Engagement is a quality of user experiences with technology that is characterized by challenge, 
aesthetic and sensory appeal, feedback, novelty, interactivity, perceived control and time, 
awareness, motivation, interest, and affect". The resulting conceptual model of engagement 
distinguishes 4 possible phases through an engagement process: The user initiates and sustains 
engagement during a session; he disengages, and potentially reengages several times during a 
single interaction with the system or through subsequent sessions. O’Brien & Toms also 
considered the factors that usually lead to non-engagement, where the user completely drops the 
interaction with the system.  
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Since learning and engagement are closely interrelated, the framework proposed here will also 
address the engagement of the participants in CCS projects. Well-designed analytics will allow 
for a better understanding of their interactions. 

1.3 Learning Analytics 

With the generalization of technology-based learning opportunities, and with the generalization 
of data science practices in increasing number of fields and domains, it was natural to see a rising 
interest in the collection and the exploitation of educational analytics for various purposes: 
educational, academic (administrative) and even economic and strategic (Ferguson, 2012). 
According to the 1st International Conference on Learning Analytics and Knowledge3, “Learning 
analytics deals with the measurement, collection, analysis and reporting of data about learners 
and their contexts, for purposes of understanding and optimizing learning and the environments in 
which it occurs”. 

Learning analytics finds its immediate legitimacy in the contexts of online education, in Virtual 
learning Environments (VLEs) and in massively open-access online courses (MOOCs) for formal 
or informal learning. It is used to support the provision of a timely picture of the learning process 
of theoretically every learner, allowing for appropriate adjustments and feedbacks and 
overcoming the usual delays that educational systems usually suffer from. As an example of the 
application of learning analytics, Morris, Finnegan & Wu (Morris, Finnegan, & Wu, 2005) 
studied the impact of student engagement on their success in a fully online asynchronous 
program. They tracked student basic activities related to the participation on a Learning 
Management System (LMS) (e.g., content pages viewed, number of posts) as well as the duration 
of participation (e.g., hours spent viewing discussion pages and content) and they were able to 
discriminate significantly between “withdrawers” and “successful and unsuccessful completers”. 

Similar practices seem adapted to citizen cyberscience projects. As we discussed earlier, online 
behavior of participants has undeniable effects on learning in citizen science projects. There are 
also similar concepts of engagement, hence tracking the digital traces of the participants in citizen 
science projects with learning analytics may provide an extra means to understand their behavior 
and enhance their experience. Besides, issues regarding the CCS web site usability can also be 
detected with analytics. Although these applications of analytics are very important, they fall 
outside the scope of this article. 

In addition, analytics allows for a fine-grained engagement analysis. If the analytics are well 
designed, an engagement study could be easily scalable, i.e. we can study engagement globally, 
on a daily basis, or even hourly if it is needed, provided, again, that the number of users is 
sufficiently high to generate meaningful statistics.  Also, with the possibility of observing the user 

 
3 https://tekri.athabascau.ca/analytics/  
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behavior in a nearly real-time manner, it is easier to detect unexpected behaviors, detect potential 
usability issues and make timely actions to improve pilot projects faster. User 
profiling/segmentation is also possible with analytics and can help to develop and assess specific 
actions for engaging under-represented and specifically targeted groups. 

We used analytics as one part of a larger evaluation toolbox for assessing learning and 
engagement in CCS. Alongside the data-driven approach of analytics, we deploy other 
traditionally used tools such as online surveys, on-topic quizzes, diary analysis, and structured 
interviews with active participants and even behavioral observations and focus groups run during 
outreach events. In fact, learning induced by social and collaborative activities seems to be the 
most effective in the context of CS (Kloetzer L. , et al., 2013). This type of learning is not easily 
tracked with learning analytics, hence, analytics could be combined with online surveys and 
quizzes. While surveys might be subjective and respondent samples not really random, analytics 
could lack accuracy but would still be automatically collected for virtually every user. Merging 
mutiple sources of data—surveys, quizzes and analytics—promises to lead to a better analysis as 
long as there is enough participation.  

Existing learning analytics data collection tools 

The use of learning analytics to inform data driven decisions is expanding in formal education 
institutions, hence most of the Learning management systems and MOOC platforms also offer 
built-in analytics tools. Game sites can now also use  analytics tools available from game 
platforms such as the open source game analytics tool RedMetrics (Himmelstein, Goujet, & 
Lindner, 2016), or the one offered by Unity4 and used for example to track the educational games 
developed at Aarhus University in Denmark: Science at Home5. 

Besides these specific-context tools, there are general purpose web analytics data collection tools 
such as Google Analytics (GA)6 and Piwik7, the leading open-source alternative offering similar 
functionalities to GA (for a full list, see 
https://en.wikipedia.org/wiki/List_of_web_analytics_software). Using GA brings the additional 
benefit of  being able to  incorporate the demographic information that Google gathers on its 
users worldwide into analysis, which can be used to build the participant segment profiles. Open 
source analytics frameworks such as Piwik allows CCS projects to preserve ownership/ guarantee 
confidentiality of the analytics data if the self-hosting option is chosen. 

To our knowledge there are no stable standalone learning analytics tools yet. A thorough state of 
the art research started in 2014 is available at 

 
4 https://unity3d.com/services/analytics 
5 http://scienceathome.org/ 
6 http://www.google.com/analytics/   
7 http://piwik.org  
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http://edutechwiki.unige.ch/en/Portal:_Data_mining_and_learning_analytics_tools. At present, 
most of the developers of CCS projects rely on server logging and on collecting data via Google 
analytics. 

Although the framework presented here is independent of the analytics data collection tool, the 
selection of the tool is an important decision that impacts the entire process of designing, 
deploying, implementing and collecting the analytics data. Among the criteria that influence the 
selection of the data collection tool, we mention: the availability of the tool (immediacy and 
sustainability), its implementation and testing time, its accessibility (to multiple users with access 
rights management capabilities), its treatment of the privacy issues, its accuracy (for instance, 
Google Analytics in some cases, reports only a sampling of the over-all data), the GUI and 
interactive capabilities of first-hand manipulation, and finally, the availability of demographic 
info of the users. 

Figure 1 shows an example of the different components involved in the process of collecting and 
analyzing quantitative data sources (survey and analytics data) of two pilot projects, part of the 
European Citizen Cyberlab project. Analytics data are collected through the use of a client-side 
analytics event generator: the CCLTracker javascript library (Fernandez-Marquez, et al., 2016) 
and then stored with Google Analytics. Survey data are collected through a LimeSurvey platform 
directly launched from the citizen science platforms. Data from these two sources can be cross-
referenced since users are given the same anonymous identifiers in both cases. Data are exported 
as CSV files and can be imported into statistical packages for analysis. In our case, we used SPSS 
for the analysis of survey plus analytics indicators data. R was used to filter analytics data, to 
compute indicators (metrics computed based on the raw analytics data) and to conduct the 
profiling analysis introduced in the example of application section of this paper. 

2. A FRAMEWORK TO USE LEARNING ANALYTICS IN CITIZEN 
CYBERSCIENCE PROJECTS 

2.1  Overview of analytics in citizen cyberscience 
The analytics data that we can collect and analyse is rich and varied in scope; they allow creating 
explanatory models of learning. Some data give information about the demographic profiles of 
the participants such as age, interests, gender, and location. Other data reflect engagement with 
the project through time. A third group records interaction with various systems components, and 
indirectly tells us about their learning progress. Even the participant creativity and collaboration 
can be tracked with analytics.  
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Figure 1 The analytics data collection scheme in the Citizen CyberLab pilot projects. 

The proposed engagement-related analytics data inspire from the engagement conceptual model 
of O’Brien and Toms (O'Brien & Toms, 2008), though they are limited to infer on the 
engagement through time. In fact, analytics might not be naturally adapted to infer on other 
dimensions of engagement. Engagement through-time analytics data are based on the observation 
of activity and inactivity periods as well as on the activity intensity. Analytics data seem to be a 
very convenient data source for monitoring user activities which can be aggregated into multiple 
engagement indicators. Ponciano and Brasileiro (Ponciano & Brazileiro, 2014) applied this 
conceptual model to study engagement profiles in astronomy projects from Zooniverse. The 
engagement profiling they conducted was based on four indicators computed on a daily basis:  

(1) The daily devoted work represented by the average activity duration through an active 
day,  

(2) the activity ratio which is the ratio of the number of active days to the total period of 
activity,  

(3) the relative activity duration which is the ratio of the total period of activity to the period 
of possible activity, i.e. the period from the first activity till the end of the project, and 
finally 

(4) the variation in activity represented by the standard deviation of the idle time between 
active days.  
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Our framework extends these engagement metrics with others, namely, duration of 
participation which is the span of time during which a participant returns to the project, the 
number of active days during the duration of participation, peak daily devoted work, total 
devoted work during the entire period of activity, and the skewness of the daily work through 
the period of activity. The skewness might reveal the pattern of engagement through time: 
whether the participant starts enthusiastically and then loses interest, or, on the contrary, whether, 
(s)he starts slowly and gets more engaged as (s)he participates further. 

Learning-specific analytics reflect performed actions that are potentially related to learning 
outcomes (e.g. time to complete a task, number of tasks done by the users, completion or 
abandonment of a tutorial, or the score attained in a specific activity, etc.). For instance, we use 
task completion time to infer on the needed effort to complete a specific task. Its evolution 
through time can inform about the learning curve of the participants. In the same terms, we can 
analyse the time series of scores related to a given repeated task. Also, correlations with 
completed tutorials can also inform about the impact of offered tutorials on learning.  

Most importantly, our framework suggests that learning analytics data should be derived from 
well-defined expected learning outcomes of the CCS project. Also, they can be designed to reflect 
different learning dimensions from those presented in section 1.1 that are adapted to be inferred 
by analytics, e.g. the project mechanics, pattern recognition skills, and on-topic learning. 

With the proposed learning analytics data, we can go beyond the computation of simple 
indicators as those proposed in Table 1 and suggest more complex analysis. The CCS project 
designers can identify specific activity paths, and study the impact of these paths on participant 
learning. For instance, VAS game appeared to be a complex game. Its designers identified an 
expected path (a sequence of actions) that a good player is supposed to complete sequentially, 
well-designed analytics data with proper time stamping allow to detect these paths in the activity 
of each participant and then to infer on their impact on the individual learning experience. 

Creativity and collaboration are also two important aspects that citizen science projects would 
tend to stimulate. Analytics in the large sense can also be used to detect and evaluate creativity in 
the interaction of participants; Jennett & al., for instance, indicate that an active project 
community is a good stimulator of creativity (Jennett, Eveleigh, K., & Cox, 2013). Data such as 
the discussion boards of project forums are also potentially useful for assessing learning and 
creativity through methods of text analysis such as topic modelling, named entity recognition, key 
phrase extraction, or sentiment analysis.8 It could also be interesting to conduct a social network 
analysis and explore how the participants interact through the project communication channels. 

 
8 see http://edutechwiki.unige.ch/en/Portal:_Data_mining_and_learning_analytics_tools or  
http://www.tapor.ca/ to explore existing tools. 
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The matrix in Table 1 provides some generic analytics that citizen science researchers may be 
interested in collecting, and then combining and summarizing into meaningful indicators. Data 
and indicators in the matrix are classified into five categories: demographic, learning, 
engagement, creativity and collaboration. The second column contains analytics data that can 
be combined into indicators as those cited in the third column. These indicators can be later used 
in the analysis of many aspects and interactions of any of the aforementioned categories. 
Obviously, the matrix is not exhaustive, and not all of the suggested analytics are relevant to all 
types of projects (for instance, due to their pilot nature, the projects we studied lacked meaningful 
collaborative and creativity analytics data).  

A thorough examination of the proposed indicators reveal that they can further be separated into 
explanatory indicators and (dependent) measuring indicators. For instance, regarding the learning 
analytics, the number of completed tutorials is a variable that contributes to the explanation of 
how learning is occurring, while the duration that a participant needs to reach a specific level or, 
or the score (s)he achieves can be considered as measures of learning. For simplicity sake we 
don’t consider this distinction here as it also depends on the statistical analysis to be applied to 
the analytics data. 
 

Table 1. Overview of analytics data of interest in Citizen Science. 

Category Analytics data Possible indicators (per participant) 

D
em

og
ra

ph
ic

 

Age   

Gender   

Location / language,   

Occupation   

Referral9   

  

 
9 Referral is the originating site from where visitors arrive to the CS site. Referral traffic information might help in 
identifying external sources that are most valuable in referring to the project site. 
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Category Analytics data Possible indicators (per participant) 

E
ng

ag
em

en
t 

Date of first activity 
Date of last activity 

Activity duration 
relative activity duration (if the project 
has a deadline) 

Active days dates Activity ratio 
Variation in activity 

Nb. 
completed/interrupted 
tasks per activity day 

Average Nb. of tasks per active day 
Total Nb. of tasks over the activity 
duration 
Peak Nb. of tasks per active day 
Skewness of activity 

Session/daily duration of 
activity 

Average session/daily duration of activity 
Peak session/daily activity duration 
Skewness of session/daily activity 

L
ea

rn
in

g 

knowledge pretest and 
posttest(s) answers 

Classification of the participant 
(with/without prior knowledge, expert, 
etc.) 

Accessed tutorials Nb. of accessed tutorials 

Percentage of completion 
of each tutorial 

Average percentage of completion of 
tutorials 
Nb. of completed/skipped tutorials 

Time spent on each task 
(completed or 
interrupted) 

Average time spent on 
(completed/interrupted) tasks globally or 
daily 

Level achieved and date  Classification of the participant 
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L
ea

rn
in

g 
(c

on
tin

ue
d)

 

Individual scores or any 
other value computed or 
achieved by the 
participant 

Daily or global average score 

Percentage of completion 
of each task 

Average percentage of completion 
globally or daily 

Nb. 
completed/interrupted 
tasks per activity day 

Percentage of completed tasks, globally 
or daily 

C
re

at
iv

ity
 

Nb. artifacts produced   

Nb. of blog posts   

Length of blog posts Average length of blog posts 

Nb. wiki contributions   

Length of wiki 
contributions 

 Average length of wiki contributions 

C
ol

la
bo

ra
tio

n 

N artifacts shared 
(“words”, pics, etc.). 

  

Nb. forum messages   

Nb. of blog comments   

Nb. chat messages on 
public channels 

  

Word count of forum/chat 
texts 

Average word counts 

Category Analytics data Possible indicators (per participant) 
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2.2 The framework  
In the following we use the term platform to describe any type of citizen cyberscience 
environment that provides a common working area for participants: these can be projects, games, 
platforms, or social networks, etc. We consider here analytics data in the narrow meaning, i.e. 
low-level data that track the interactions of a participant with the web interface of a CCS project. 
And we will mainly focus on learning and engagement. 

Analytics data definition 

The first step in setting up learning analytics in a CCS project is the definition of the analytics 
data, i.e. what we are going to measure and how we are going to measure it. As analytics are the 
low-level data, their definition must directly stem from the learning outcomes that are initially 
expected from participating in the project. Project designers, educators and developers must first 
reach an agreement on the learning outcomes to be evaluated. These outcomes should be SMART 
(specific, measurable, action-oriented, relevant, and time-related (Piskurich, 2011)). A good 
starting point for the definition of citizen science learning outcomes would be the User's Guide 
published by the Cornell Lab of Ornithology in 2014 (Phillips, Ferguson, Minarchek, & Bonney, 
2014). 

Once they have agreed on learning outcomes, the team must agree on the corresponding 
indicators to assess each outcome, and finally on the low-level analytics data (also called 
analytics events) necessary to compute the indicators. Obviously, the definition of analytics can 
go through an iterative process but developers should be aware that the implementation of 
analytics should start early in the phase of development and should be tested during the test and 
pilot phases since introducing analytics incrementally after project start will limit the period 
during which meaningful analytics data can be collected for an acceptable number of participants. 

As an example of a common indicator for many CCS projects, bad clicks around the project 
interface are an indicator of how well participants master the interface. An analytics event can be 
generated each time a participant clicks in a wrong place. The event can include information 
about the part of the interface where the bad click occurs, and on the time of occurrence. Later, 
several indicators can be computed, depending on the level of detail needed. For instance, a 
global ratio of bad clicks can be computed and analyzed. Observing the evolution of this ratio 
through time might reveal if the users are improving and learning how to use the interface 
appropriately. It is also possible to make inferences about the usability of different parts of the 
interface by using the details in the events that inform about the placement of the bad click. 

More complex learning outcomes might involve many different analytics events or require 
tracking the chronological sequence of events. For instance, following an adequate playing 
strategy in a CCS game can be considered as an expected learning outcome. This playing strategy 
can be detected if a set of actions is executed in a specific order. In this case, the needed analytics 
data might involve several user actions and their sequencing.  
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Analytics data generation and collection  

Once the analytics data are defined, they need to be implemented through client-side analytics 
libraries, either domain-specific ones such as RedMetrics or Unity (mentioned above) or by using 
generic analytics packages such as the CCLTracker JS library that is specifically designed to 
generate general learning analytics (Fernandez-Marquez, et al., 2016). One highly desirable 
feature of CCLTracker is its high-level API to ease the implementation of complex client-side 
monitoring tasks, such as time watching a video, or time spent doing a task, etc. As with any 
piece of code, analytics implementation should be carefully tested to be sure that we are gathering 
all the needed events and related data. 

Subsequently to testing, the data collection can start. It involves observing and recording the 
interaction of participants with the citizen science platform. Data are generally logged and stored 
for later processing, yet real-time tracking might also be available (for instance if GA or Piwik 
are used)  
 

Analytics data processing 

Typically analytics data are collected according to the following format: 

User Id Combined 
event 

Complementary 
info 

Date Time 

Figure 2 A suggested format of an analytics data structure 

User Id is an anonymous identifier that the developers define and make sure it is shared 
among all the data sources of the activity of the participants, i.e. analytics, online surveys, 
in-app questionnaires, etc. 

Combined event is an event tag combined with some extra information. The extra 
information can, for instance, indicate the part of the UI where it occurs, or on the answer 
of the participant in a related activity. 

Complementary event info is a field that does not always contain relevant information. 
It might be used for some types of events to give a timestamp, a percentage of completion 
of an activity, or the duration of time spent on the activity. 

Date and time are the timing information to be provided for each occurring event. In 
some cases, a more precise timestamp is needed in order to chronologically order the 
events, and in this case it can be transmitted in the complementary info field. 
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Typically, on a normal active day, participant activities can generate thousands of events. These 
events are collected and processed and then aggregated into the defined indicators reflecting the 
learning outcomes.  

Analytics data analysis 

Once the indicators are computed for each participant and stored in a dataset of the format below 
(Figure 3. Analytics dataset format), the statistical analysis of the indicators can start and it is at 
this stage that it is possible to combine or merge the analytics data with other data sources based 
on the user Id’s. 

User Id Indicator1 Indicator2 … IndicatorN 

Figure 3. Analytics dataset format 

The exploration, visualization and statistical analysis of the resulting data will help with testing 
research hypotheses and answering specific questions, for instance, regarding the effect of 
engagement in citizen science projects on some aspects of the participant learning experience. 

At this stage, it is potentially needed to go through an indicator/feature selection process. As 
analytics data collection tools allow for the generation of rich datasets, Parts of the data might be 
either redundant or irrelevant to the analysis of a specific aspect of engagement and learning. In 
order to better adjust the analytics dataset to the needs, we can rely on feature selection methods 
that are adapted to the statistical analysis we are interested in. 

Finally, if we want to compare different CCS platforms serving the same purpose or same 
domain, we might design complex indices or KPIs (key performance indicators), and analyse the 
performance of different platforms against these KPIs. 

3. EXAMPLE OF APPLICATION  

The framework proposed here is applied to the two pilot projects mentioned in the introduction: 
GeoTag-X and Virtual Atom Smasher. Ideally, analytics should be gathered for long periods and 
with thousands of participants to lead to interesting analysis. We were only able to track our pilot 
projects for short periods of time and participants were only few hundreds; in spite of this, a 
typological analysis returned interesting results regarding short-term engagement-learning 
profiles.  

We start by introducing the profiling approach that we followed and then for brevity’s sake, we 
present the analysis results of one pilot project: GeoTag-X. A similar approach was followed and 
results were also obtained for VAS and are briefly presented in (Fernandez-Marquez, et al., 
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2016). A full analysis is available in the Citizen Cyberlab deliverable (Kloetzer L. , Schneider, da 
Costa, Abu-Amsha, & Jennett, 2015)  

3.1 Profiling participants based on their analytics data 

Once the different indicators of interest have been set, many statistical analysis methods can be 
used to gain insight into the different aspects of the participant behavior. Departing from the 
hypothesis that there is a correlation between the engagement through time and the learning 
outcomes, we propose a strategy to cluster participants based on their engagement and learning 
indicators. We drew inspiration from (Ponciano & Brazileiro, 2014) where the authors focused on 
engagement profiles while we use both engagement and learning indicators. 

We conducted an exploratory cluster analysis on analytics datasets with the objective of 
identifying participant types. Ponciano and Brazilero applied clustering analysis on a set of 
engagement indicators of participants in two projects from the Zooniverse family, tracking tens of 
thousands of participants over more than 18 months. Our datasets extend to a few months with 
only a few hundred participants. We were curious to see if applying the same approach as in 
(Ponciano & Brazileiro, 2014) on such limited datasets would reveal any interesting patterns.  

Our preliminary analysis of Virtual Atom Smasher data revealed that, for such small datasets, 
clustering with both types of indicators give more interesting results than with the unique 
engagement indicators. In fact, clustering represents a first-hand analysis and allows for the 
identification of participants exhibiting similar behavior patterns regarding learning and 
engagement.  

Regarding the profiling methodology, a classical hierarchical clustering can be applied to a 
dataset where rows represent the identified participants in a CCS project, and columns represent 
the respective scaled values of indicators deduced from the analytics of each participant (as 
depicted in Figure 3. Analytics dataset format. Scaling the values is required to ensure the good 
performance and interpretation of the clustering output as the selected indicators might have very 
different value ranges  

Clustering is used here to identify groups of users who share similar engagement and learning 
characteristics. The number of clusters is not known in advance, many advanced techniques are 
available to estimate it. A first-hand approach would be to observe the tree diagram of the 
hierarchical clustering (also known as dendrogram) and see how many clusters seem clearly 
separate. Once the number of clusters is decided, we would examine the centers of the clusters, 
which are the means of each indicator inside each cluster. These centers help to assess how 
distinct the clusters are and what are the main characteristics of each cluster. Many metrics are 
also available to assess the quality of the clustering analysis. Their presentation falls beyond the 
scope of this paper. 
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Correlation analysis is also available for testing hypotheses regarding, for instance, the 
relationship between different types of engagement and learning of specific aspects of the project. 
Predictive models can then be developed to predict which type of engagement could lead to the 
learning outcomes that most interest the CCS project leaders. Again, such analysis requires 
datasets of reasonably big sizes to be significant and lead to interesting results. 

Experimentations with Virtual Atom Smasher and GeoTag-X analytics were done in R and the 
results for GeoTag-X are presented next. 

3.2 Profiling GeoTag-X participants 

As mentioned in the introduction, GeoTag-X is a crowdsourcing platform where the main tasks 
are: identifying relevant photos to a specific disaster, conducting detailed analysis of those photos 
and potentially geo-referencing them as precisely as possible. 

A typical task in GeoTag-X concerns answering a few multiple-choice questions about a 
displayed photo related to a specific disaster context. The platform provides training tutorials that 
are supposed to be completed prior to every different theme (called projects in Geotag-X) but the 
tutorials are not compulsory and can be skipped. The participants can analyse the same photos 
several times as long as the photos are available for analysis (A photo is hidden once a fixed 
number of analysis is achieved) 

We tracked the activity of the users of GeoTag-X from the 5th of August 2015 to 21st of October 
2015. During that period we gathered learning analytics from 959 users, 706 participants were 
anonymous and 252 participants were identified. The participants completed a total of 6837 tasks. 
6669 tasks were done by identified users and only 168 (8.5%) by anonymous users. In fact, 
despite the high number of anonymous participants, the completed tasks were mainly done by 
logged-in participants 

As a first hands-on exploration of what information can be inferred using the collected analytics, 
a hierarchical clustering is implemented in order to discover the profile of the users without using 
any other prior information. Table 2 classifies the different indicators used in the profiling 
analysis in two types: learning indicators and engagement indicators. Each indicator is computed 
for each individually identified participant based on her/his collected analytics data. The events 
mentioned here are the analytics events explained in section 2.2 and that reflect on the activity of 
a given participant.  

It is to be noted that the short data collection period didn’t allow for the computation of other 
interesting indicators, for instance we could not collect enough data to compute indicators around 
the variation in activity through time, instead we only computed the duration of participation 
during the data collection period as the number of days separating the last day of activity from the 
first day, then, we computed the number of active days during this period. 
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ENGAGEMENT INDICATORS LEARNING INDICATORS 

• Total duration (in days) 
• Nb. of active days in the whole duration 
• Mean nb. of events per day 
• Total nb. of events in the total duration 
• Peak nb. of events per day 
• Skewness of nb of events 

  

• Mean nb. of bad clicks per day 
(independently of the location of the 
bad click) 

• Ratio of bad clicks (bcr) 
• Total nb. of started tutorials 
• Total nb. of completed tutorials 
• Total nb. of skipped tutorials 
• Mean time before skipping tutorials 
• Mean time to complete tutorials 
• Total nb. of distinct completed tasks 

(info provided from server-side) 
• Total nb. of started tasks 
• Total nb. of completed tasks (not 

necessarily distinct) 
• Mean-min-max-standard deviation of 

task duration 

Table 2. Indicators used in a cluster analysis of participants in GeoTag-X. 

The hierarchical clustering mainly revealed four different participant profiles in GeoTag-X:  

Users who did 
not submit any 
task (no tasks) 

When the dataset was explored, we observed that 77 did not 
submit any tasks during the studied period. These 
participants visited the web site and had a limited activity 
with a seemingly higher bad click ratio than the other 
groups. These participants are grouped in one group and 
excluded from the clustering analysis because they lack the 
indicators related to task activity. 

Explorer Users with a low level of engagement, who contributed on 
average less than 3 tasks per user. We identified 55 users in 
this group. Only 10 of them came back for a third time. 

Ephemeral 
  

The group of participants who return slightly more often 
within a short period of time (typically within less than a 
week), but who, in contrast to the explorer group, has 
meaningful activity in the area of task submission (twenty 
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tasks per user on average). We identified 89 users in this 
group. 

Committed The group of users who return several times and submit a 
lot of tasks (one hundred tasks per user on average). 

Table 3 below presents the centers of the different groups to which GeoTag-X participants 
belong. Some interesting indicators of the cluster centers are also depicted in Figure 5. 

Table 3. The mean values of the indicators of GeoTag-X activity according to the different participant groups. 

 No Tasks Explorer Ephemeral Committed 

Sizes 77 55 89 31 

nb. of active days in the 
total duration 1.75 1.85 2.06 9.16 

total duration (in days) 6.92 5.27 3.25 32.52 

activity ratio 
(nbActivDays/duration) 0.80 0.75 0.85 0.39 

mean nb. of events per 
day 19.43 47.36 133.07 133.13 

total nb. of events in the 
total duration 32.77 80.49 242.78 1060.32 

peak nb. of events per 
day 27.25 61.60 177.72 368.32 

skewness of nb. of events 0.34 0.07 0.07 0.78 

     

 No Tasks Explorer Ephemeral Committed 

mean nb. of bad clicks 
per day (independently of 

the location of the bad 
click) 

2.27 4.69 8.65 5.77 

ratio of bad clicks (BCR) 0.13 0.10 0.06 0.05 

nb. of started tutorials 0.81 1.62 2.42 7.29 
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nb. of completed tutorials 0.21 0.69 0.76 1.48 

nb. of skipped tutorials 0.22 0.38 0.90 3.58 

Mean time before 
skipping a tutorial* 122.88 137.99 121.96 52.80 

Mean time to complete a 
tutorial* 449.82 203.82 283.26 243.74 

total nb. of distinct 
completed tasks** 7.40 11.11 30.87 163.52 

total nb. of started tasks 3.13 6.76 29.48 142.00 

total nb. of completed 
tasks (not necessarily 

distinct) 
0.00 2.51 19.20 99.23 

     

 No Tasks Explorer Ephemeral Committed 

total nb. of distinct 
started tasks during the 

analytics collection 
period 

2.60 5.78 26.15 118.52 

total nb. of distinct 
projects in which tasks 

are at least started 
1.10 1.24 1.57 2.97 

mean task duration* NA 83.73 79.25 63.61 

max task duration* NA 100.17 170.75 185.66 

min task duration* NA 68.09 19.56 5.73 

standard deviation of task 
duration* NA 29.85 51.56 46.54 

 
* Durations are provided in seconds 
** Information provided from GeoTag-X server and not from the analytics. 
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Figure 4. Distribution of GeoTag-X participant types in terms of number of participants 

The group distribution resulting from the typological analysis shown in the head of Table 2 and 
depicted in Figure 4 indicates that 47.6% of the identified participants in GeoTag-X (the 
ephemeral and committed groups) had a meaningful contribution. Individual participants from 
these two groups typically submitted more than twenty different tasks and contributed to several 
projects (or themes) on the site (Figure 5 (c) and (e)). 

Figure 5 (a) depicts the longer durations (in days) during which committed participants stayed 
connected to the project (i.e. returned to it) in contrast with the other groups. The number of 
active days of this group is also higher. We observe that the higher level of participation (number 
of tasks submitted) involves a higher number of visits (more active days) and longer durations 
during which participants stay on the website and return to the project. 

Event statistics in Figure 5 (b) show the higher intensity of activity of the committed group, and 
also reveal that the ephemeral group has a higher activity than the explorer group. 

The total task bar in Figure 5 (c) uses the data stored on GeoTag-X server and shows the total 
number of tasks that each participant contributes independently of time. That is why we see a 
small number of tasks attributed to the first group who submitted no tasks during the period of the 
analytics collection. This indicates that participants from this specific group had a limited activity 
before the analyzed period. Their activity type is closest to the explorer group. 

Figure 5 (d) reveals a disparity between the minimum times to complete a task for each group. 
One might expect that the longer the participants remain on the GeoTag-X website, the faster they 
manage to submit tasks. As detailed in  



 Amsha et al. / Human Computation (2016) 3:1 91 
 
 
 

 

Table 4, the global correlation confirms this hypothesis with a significant negative correlation 
although of a small value. The in-group correlations are not significant since the number of active 
days is small for the participants in the explorer and ephemeral groups, and the number of 
participants is not large enough in the committed group. 

 

Figure 5. Some indicators of GeoTag-X activity according to the different participant groups. 

 

(a)	

(f)	

(b)	

(e)	

(d)	(c)	
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   Minimum task duration 

X 
Nb. Active Days 

Explorer Correlation 0.138 

  significance 0.3 

Ephemeral Correlation -0.061 

significance 0.6 

Committed Correlation -0.138 

significance 0.5 

Global Correlation -0.218 

significance 0.004 

 
Table 4. Correlations between the minimum time to submit a task and the number of active days, 

in each group and globally for all the participants. 
 

As the duration to complete a task is an indirect measure of how confident the participant is 
regarding the photo analysis (s)he is conducting, it is interesting to explore whether these 
durations differ significantly among detected groups. A one-way ANOVA is also applied to test if 
the value of the minimum duration to complete a task differs significantly among the three 
groups. The test confirms this difference with a high significance (p-value < 0.001). The same 
ANOVA analysis is also applied to the mean duration and also confirms differences in values 
among groups but with a weaker significance (p-value= 0.02921). In fact, the difference in mean 
durations to complete a task among the ephemeral and the explorer groups is not significant as 
confirmed by a t-test. To properly infer on learning, and with richer analytics data, it will be 
interesting to study the time evolution of task completion duration to see if the participants 
become more expert and achieve the tasks faster with time. 

It is, in principle, possible to merge analytics data designed according to the proposed framework 
with online survey data of the CCS project. Interesting analysis can be conducted if enough 
participants are tracked with analytics and also fill in the surveys. GeoTag-X proposed two online 
surveys (Kloetzer L. , Schneider, da Costa, Abu-Amsha, & Jennett, D6.3 Learning in Citizen 
Cyberlab, 2015)— a pre-test offered at the sign-up and a post-test offered after a user has 
completed 30 tasks. Both short surveys were designed in cooperation with the pilot project team 
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to measure project specific learning and reasons motivating participants to participate in GeoTag-
X. A short analysis that combines analytics and surveys data is presented in the project 
deliverable (Kloetzer L. , Schneider, da Costa, Abu-Amsha, & Jennett, 2015). 

We see here that the typological analysis of short-term engagement and learning indicators 
revealed different patterns from the ones revealed in long-term engagement profiling presented in 
(Ponciano & Brazileiro, 2014) which is expected as we included learning indicators and we only 
analysed short-term activity. Interestingly, there were similarities between the analysis results of 
Geotag-X and VAS analytics data with slightly different profiles of VAS players. The typological 
analysis separated VAS participants into those who visited the game only for one day and never 
returned, those who explored the game for short periods, and those who were committed. A 
distinct group is detected among VAS players, and includes players who seemingly were very 
active but apparently didn’t manage to play properly and then abandoned the game after few 
days. It will be interesting to apply the same learning-engagement typology analysis to different 
types of CCS projects and see if common patterns arise. Also, we are aware that applying the 
same analysis to larger datasets might change the resulting typology and this should makes part of 
our future research plans. 

4. GOOD PRACTICES IN THE USE OF LEARNING ANALYTICS 
Our experimentation with the learning analytics of both VAS and GeoTag-X reveals that valuable 
insights could be gained from analytics data. The full exploration of all avenues requires long 
periods of data collection and more participants. The following list sketches general 
recommendations for a full exploitation of learning analytics. They are the result of our 
experience with the learning analytics of the two pilot projects VAS and GeoTag-X, using 
CCLTracker (Fernandez-Marquez 2016) and GA services for the collection of data. Data 
manipulation and analysis are done in R.  

Design Aspects 

• Analytics should be present starting from the first phases of the design of the projects. 
• The design of the tracking activity is a collaborative work between educators, designers and 

developers to define the relevant expected learning outcomes and how to track them. 
• The definition of analytics is a top-down process: After specifying the Expected Learning 

Outcomes according to the different dimensions of the learning, the needed indicators should be 
derived followed by the needed analytics to compute these indicators. A bottom-up feedback is 
also necessary, as we need to be sure that the analytics we expect to build our indicators are 
practically available. 

• We have to keep in mind that analytics cannot track everything. For instance, the duration of a 
session is a very questionable concept as a user might keep the page/task active while not 
working on it and it is difficult to guess when (s)he really abandons. 
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• Analytics data can be combined with electronic surveys and questionnaires. They can also be 
combined or triangulated with server-side logs to better track the behavior of the users. 

• Based on the expected participation in the CS project, the data scientist should forecast and 
allow for reasonable activity duration before starting the analysis. 

Technical Aspects 

• It is important to start by setting up reliable and scalable user identification schemes respecting 
the privacy and allowing the connection with potential electronic surveys and questionnaires 
that users might also fill in. 

• Anonymous contributions are important to many CCS projects; however, in these cases, we 
cannot carry out an engagement or learning assessment as anonymous users cannot be tracked 
through time even if they return several times to the project. In such cases, only contributions 
through individual activity sessions can be tracked without any identification of the users.  

• In order to separate the event tracking logic from the specific service that collects the analytics, 
user behavior must be tracked locally (client-side) and interesting events are defined with a 
suitable data structure using, for example, a framework such as CCLTracker, then the data can 
be sent to GA, or any other analytics service or stored on the project servers. 

• In general, we must explicitly track the start-time and the finish-time of each meaningful user 
action. Including the duration of the action allows also for simplifying the data processing. 
otherwise, each action should have a unique Id to detect the events that track its beginning and 
its end or its interruption. This ultimately makes the structure of an analytics event complex, 
and potentially dependent on the selected analytics collection and storage option (e.g. locally, 
GA, etc.), hence the events should be carefully designed from the beginning. 

• Special attention should be given during migration of data, server logs and analytics schemes to 
a new version of the project platform, hosting environment, or web interface. Without backward 
compatibility of the data and the analytics, the use of analytics in the long-term will be 
compromised. 

• Spare enough time to test analytics data collection and consider all the use cases. For instance, 
we noticed that when tracking clicks on hyperlinks, if the user decides to open the link in a 
separate tab to keep the project page open, the click event is not tracked. 

• Statistical analysis could be done in any statistical packages such as SPSS or the programming 
language R. 

Finally, we would recommend storing analytics data locally to keep the ownership, have full 
control on the data, and be confident of its quality. If the demographic data offered by Google is 
really important for the project team and it is not available through other channels, Google 
analytics service can be used to track global activity on the project platform without necessarily 
implementing a tracking system that sends all the events to GA, but in this case, one should be 
aware that the possibilities of crossing different types of analytics can become limited, also, that 
extra time should be devoted to develop the visualization and manipulation capabilities that 
Google analytics avail to its users through the GA web interface. 
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5. CONCLUSION AND FUTURE WORK 

Most citizen science projects have educational goals and expect to improve the scientific literacy 
and the public understanding of science in addition to their ultimate goal of supporting 
researchers in accomplishing tasks with the help of the crowd. Learning analytics is a source of 
valuable data for tracking participant activity and understanding how and what they are learning 
when contributing to online citizen science projects. 

Also, analytics can be most helpful in feedback loops as it allows for a better understanding of 
participant profiles and behavior in CCS projects. It also helps programs to develop adapted 
actions in four different directions identified in (Bonney, Phillips, Ballard, & Enck, 2015), 
namely project design, goals achievement (outcomes) measurement, diversification of targeted 
volunteers through adapted outreach actions, and ultimately, the exploitation of analytics in 
conjunction with other evaluation tools might reveal new research directions to explore.  

When the analytics data are well-defined, they offer many possibilities to fine-tune the analysis of 
the participant behavior. With further experimentation, our framework can be extended to 
propose such possibilities. For instance, Jordan & al. (Jordan, Ballard, & Phillips, 2012) suggest 
that some projects with long time run and long-term participants may consider different types of 
learning outcomes for different levels of participant engagement. In other words, it may be worth 
engaging long-term volunteers in different types of activities with different learning outcomes. 
While, short-term volunteers who might participate only a few times, may require less training, 
and still provide meaningful contribution and potentially also meaningful learning of different 
aspects. 

Also, depending on how analytics data timing is defined, a detailed analysis of the activity of the 
participants can be conducted to potentially detect chronological patterns. For instance, previous 
studies revealed some weekend bias in the CS data collected to support phenology studies 
(Cooper, 2014). Such analysis might in turn inform outreach actions: If we know that citizen 
scientists are more active on weekends or during specific periods, tailored actions can be 
launched at convenient points in time to encourage them to connect to CCS projects. 

Although our experimentation with the learning analytics of two pilot CCS projects has many 
limitations, it allowed us to gain insights into how analytics data should be designed to help 
assess the learning of the participants. The framework that we propose in this article may help 
other CCS project teams to methodically include learning analytics in the project development 
cycle in order to avoid the pitfalls that we identified during our own research and practice. Our 
future research will make use of this framework to analyse richer analytics datasets and explore 
which types of analysis are the most adapted to infer on CCS participant learning experience from 
the low-level analytics data. 
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